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ABSTRACT 
The objective of this work is to present the design of finite element software using an object-oriented language. 

Based on developments in software engineering, object-oriented programming brings new concepts that make it 

possible to modify the conventional programming approach and to generate software with a flexible and 

decentralized architecture. Firstly, some defects of the conventional programming approach, such as: illegibility 

of the software, high cost of maintenance, difficult scalability, etc., will be mentioned. Object-oriented 

programming will then be proposed as a remedy. We will define the concept, before detailing the main features. 

Subsequently, the development of finite element software in object-oriented programming will be discussed. A 

definition and description of each object used will be given. Finally, the programming of this software in C ++ 

language is presented. 

INTRODUCTION  
The finite element method (abbreviation FEM) has become one of the most powerful numerical methods ever 

developed. The FEM has been successfully applied to all branches of continuum mechanics. Among the basic 

features of the FEM which led to its success, we can mention. The possibility of choosing a variety of variational 

formulations associated with the mathematical model. The ability to work on unstructured meshes, which 

facilitates the modeling of complex geometries. Good accuracy at reasonable cost. The natural treatment of 

boundary conditions. Software programming to handle a wide variety of physical problems governed by partial 

differential equations. 

 

Effective programming of the FEM requires a good experience both in the field of finite elements and computer 

science. Finite element software is usually complicated, a few thousand lines of instructions. These programs must 

perform a wide variety of operations: database manipulation, scientific calculations, post-processing, and so on. 

Programming must be very efficient to minimize the cost of design. This efficiency can be related to the type of 

computer used, as well as the computer language. The most advanced finite element software is written in a classic 

programming language: Fortran, C, etc. In practice, it has been found that the adaptation, maintenance or reuse of 

these software presents difficulties, particularly in terms of the cost of design or maintenance. Precisely, these 

types of difficulties come from the usual programming languages used. For a decade, a new philosophy of finite 

element programming has emerged. This is object-oriented programming (abbreviation OOP). Taking advantage 

of the development of software engineering, the OOP brings new concepts that make it possible to modify the 

conventional programming approach and to generate software with a flexible and decentralized architecture, easier 

to maintain. 

 

Thus, this work presents a contribution to the finite element software design methods in OOP. At first, some 

defects of the conventional programming approach will be stated: illegibility, high cost of maintenance, difficult 

scalability, etc. The OOP will then be proposed as a remedy. We will define the concept, before detailing the main 

features. Subsequently, we will present the development of finite element software in OOP. A definition and 

description of each object used will be given. 

 

FINITE ELEMENT FORMULATION 
To dominate these projects, the engineer needs models that allow him to simulate the behaviour of complex 

physical systems. The laws of physics (or other laws) can describe the behaviour of these systems through partial 

differential equations. The FEM is one of the methods used today to effectively solve these equations. The FEM 

[1-12] consists of using a simple approximation of unknown variables, to transform the system of partial 

differential equations into a system of algebraic equations, and thus to provide an approximate solution of the 

problem. 



  
[EL Kadri* 5(3): March, 2018]                                                                                     ISSN 2349-4506 
  Impact Factor: 3.799 

Global Journal of Engineering Science and Research Management 

http: //  www.gjesrm.com        © Global Journal of Engineering Science and Research Management 

 [32] 

 

 

Formulation   Physical problem   

of equations     

Laws of physics, engineering sciences 

   Partial differential equations   

     

Transformation    Weighted residuals method 

of equations   Integral formulation   

       

    Approximation of unknown functions by  

Numerical    finite elements and matrix organization 

resolution   System of algebraic equations   

     

Numerical resolution of the system 

   Approximate solution   

 

Consider the problem of convection-diffusion, whose physical behaviour is represented by the system of partial 

differential equations  

 

F  (V)F  (V)F  V  diff

ii,

conv

ii,t,        (1) 

 

in a domain Ω  of boundary Γ . With V  is the vector of unknown variables, conv

iF  is the convection flow in the 

direction i , diff

iF  is the diffusion flux in this same direction and F  is the source vector. To this system is added 

the boundary and initial conditions. 

 

In order to numerically determine a solution, we cancel the projection of the system of equations (1) on a set of 

weighting functions W 

 

   
Ω

0Ωd    F  (V)F  (V)F  V   W diff

ii,

conv

ii,t,     (2) 

 

The second order terms in the system (1) are integrated by parts. The contour integral can be used to impose 

natural boundary conditions. We thus establish the weak variational form 

 

         
Ω Γ 

, Γd    n(V)FW Ωd    (V)F  W F (V)F  V   W i

diff

i

diff

ii

conv

ii,t,
   (3) 

 

The introduction of the weighting functions and the interpolation functions, in the elementary weak variational 

form, leads to an elementary matrix system for the nodal values of the approximation. The global form is 

constructed by assembling elementary forms. This assembly is then organized in matrix form 

 

       F)(t,  VVKV M      (4) 

 

where   M is the global mass matrix,  V  is the global vector of the nodal variables the global stiffness matrix 

 )(VK  and  F  is the global source vector. 
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Any program based on FEM includes the following steps: 

 

Reading, checking and organizing data describing a mesh 

Read and print: 

    - The coordinates of the nodes 

    - Boundary Conditions 

    - Physical properties 

    - The connectivity of the elements 

  

Construction of global matrices and global vectors 

Construction of global matrices and global vectors 

For each element: 

    - Extract information related to this element 

    - Construct elementary matrices and elementary vectors,  m ,  k  and  f  

    - Construct global matrices and global vectors. assemble  m ,  k  and  f  in  M ,  K  and  F   

  

Resolution of the system of algebraic equations 

 

       F)(t,  VVKV M  

  

Printing results 

 

 

FINITE ELEMENT METHOD AND OBJECT ORIENTED PROGRAMMING 
The OOP consists firstly of identifying, in the form of classes, the main actors of the FEM. Each actor must be 

able to perform certain tasks by interacting with other objects. The choice of classes is certainly the most important 

step when designing software in OOP Most of the researchers [12-21] who have done work on the application of 

OOP at the FEM considers a super class to build matrices and elementary vectors. Based on the inheritance 

principle, they define classes whose function is to gather all the data necessary for the super class. The assembly 

and the resolution are carried out, either with the help of another class or by enrichment of the already existing 

classes. 

 

Our goal is to design a software with a simple and flexible architecture, able to deal with various problems by the 

FEM (solids mechanics, fluid mechanics, thermal, etc.). The work of the researchers [13-21] and our experience 

in finite elements [1, 12] led us to identify the following classes of objects: 

 

 The TMesh class deals with the organization of the data of a mesh; 

 

TMesh class 

Member data: 

    number of nodes total 

    number of elements total 

    number of dimensions of the problem 

    number of degrees of total freedom 

    number of equations total 

    number of boundary conditions total 

    ... 

 

Methods : 

    read in a file 

    create a TElement element 

   ... 
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 The TNode class deals with the information related to the nodes of the mesh; 

 

TNode class 

Member data: 

    node number 

    number of dimensions 

    number of degrees of freedom 

    vector coordinates 

    vector numbers of equations 

    vector degrees of freedom 

    ... 

 

Methods: 

    give your spatial dimension 

    give your coordinates 

    give your equation numbers 

    give your degrees of freedom 

    ... 

 

 

 The TPrel class deals with nodal and elementary physical properties; 

TPrel class 

Member data: 

    number of groups of physical properties 

    number of physical properties 

    vector of physical properties 

    ... 

Methods : 

    gives the physical property of the node 

    gives the physical property of the element 

    ... 

 The TElement class deals with the information related to the elements of the mesh; 

TElement class 

Member data: 

    number of the element 

    number of nodes per element 

    element type 

    ... 

Methods : 

    gathers all the information related to the element 

    gathers information related to the physical properties of the element  

    add to the list of TMesh objects 

    ... 

 

 The TCDE class deals with the resolution of systems of partial differential equations. 

TCDE class 

Member data: 

      number of time steps 

      the time step 

      ... 

Methods: 
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      read the initial solution 

      calculate the residual vector 

      solve the discrete system by the method of Newton-Raphson 

      solve the discrete system by the GMRES method 

      ... 

 

Our choice of class is distinguished by the fact that the data structure relative to the mesh (classes TElement, 

TNode, TPrel and TMesh) is managed according to a hierarchy, whereas, the operations characteristic with the 

method of the finite elements (class TCDE) are managed according to another hierarchy. In this way, the hierarchy 

of the data structure can be reused for other purposes, such as: designing a software for building and / or adapting 

mesh, etc. 

 

TMesh class description 

The first function of the TMesh class is to be the interlocutor with the user, that is to say, to read the data files of 

a mesh (node coordinates, boundary conditions, physical properties and connectivity of elements), which other 

classes do not have access to. This measurement is simple because only TMesh is able to manage all data files 

and know the entire mesh. TMesh must read data in a certain order: node coordinates boundary conditions, 

physical properties, and connectivity of elements. The reason is that the TElement class uses pointers to nodes 

and physical properties. These pointers are created when reading connectivity. 

 

The second function of the TMesh class is to receive this data in order to allocate memory space and create each 

new object of the FEM: node, physical property, element, etc. Each object is placed, subsequently, in the 

corresponding list and will thus be accessible by any other object. 

 

TNode class description  

Knowing that one of the entities of the element is the node. Which leads us to the creation of the TNode class. The 

node as an object encapsulates all the essential information attached to it. These can only be accessed by a message 

sent to the object. Thus, the node as object represents a decentralized environment. 

 

TPrel class description 

An approach similar to creating the TNode class, leads to the TPrel class. In a finite element problem, one can 

have two types of physical properties: nodal and / or elemental. Each type of physical property can contain one or 

more property groups. These groups will be associated with some or all of the nodes or elements of the mesh. 

The physical property, as an object, presents a characteristic example of the decentralization of information: the 

search for physical properties is carried out by the TPrel class and not by the element itself. As it should, the 

method "gives the physical property ..." does not depend on the element. 

 

TElement class description 

The TElement class will take advantage of the objects of the element's entities intensively by fitting into an already 

existing environment. In this environment of objects, the element is thus identified by its number and must above 

all use: its nodes, its physical properties, etc. The role of the TElement class is to group all the information (objects) 

related to an element of the mesh. This information forms the element object that is subsequently added to the 

object structure of the TMesh class. 

 

The interest of the encapsulation of the information appears clearly: the search for the physical properties is carried 

out by the entity physical property, that is to say the class TPrel, and not by the element itself. In the same way, 

the search for the coordinates of the nodes of the element is carried out by the TNode class and not by the element; 

as well as many other data (member data of the class in question) that will no longer depend directly on element. 

The software can therefore really be written in decentralized, extensible and reusable modules. 

 

TCDE class description 

The TCDE class was designed as part of the numerical resolution of partial differential equations. This application 

consists more particularly in determining the approximate solution of these equations, at each time step. It is then 
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necessary to obtain the discretization of these equations by the finite element method in space and by finite 

differences in time. 

 

To obtain the spatial discretization, it is necessary to acquire the information and to carry out the following 

computations for each element of the mesh: 

 

1. Information about the element. 

2. The type of elements (linear, triangular, tetrahedral, prismatic, etc.). 

3. The type of weighting functions. 

4. The type of numerical integration method used, in order to know the number of integration points and to 

calculate the numerical weight. 

5. The construction of the mass matrix, the stiffness matrix, the nodal solution vector, and the source vector. 

 

For temporal discretization: Euler schema, retrograde differentiation, etc. The following solutions must be formed 

for each element of the mesh: 

 

6. The solution at time t, and/or at times tΔt   and tΔt  . 

 

To obtain the overall solution, it is necessary to assemble in order to obtain: 

 

7. The global matrix system. 

8. The global residue vector. 

 

For numerical resolution, it is necessary: 

 

9. The numerical method (Gauss, Newton-Raphson, GMRES, etc.). 

 

The following development will enrich the objects defined in the previous study on the mesh and also define the 

class TCDE. 

 

The TMesh class translates step 1 of spatial discretization. The TMesh object perfectly meets this need. Thus, an 

item identified by its number encapsulates all the necessary and available information to calculate the 

contributions that are described in steps 2 to 5. 

 

In order to calculate the contributions and thus go through steps 6 to 8, the TMeshCFD class uses a TElementTCDE 

element that was created to gather elementary data for the TCDE class more quickly. The classes TMeshCFD and 

TElementTCDE respectively derive classes TMesh and TElement. 

 

Note that an interesting option, easy and simple implantation, can be used thanks to OOP This option consists in 

enriching the TMesh class, that is to say to make it organize all the data necessary for spatial discretization. This 

amounts to saying that an element identified by its number is an object that encapsulates the information from 

step 1 to 5. However, this option has not been retained, in order to preserve the database relating to the mesh in a 

hierarchy and the characteristic operations to the finite element method in another hierarchy. Through specialized 

classes (TMeshCFD and TElementTCDE), the interface between the two hierarchies is realized. 

 

The classes TMeshCFD and TElementTCDE group all the data and methods common to any finite element. 

Similarly, the TCDE class will regroup the set of data and methods common to any time integration scheme (Euler, 

retrograde differentiation, etc.) defining the problem in finite element space. TCDE as object has the approximate 

solution of the problem at each time step. 
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APPLICATION EXAMPLE - COMPUTATIONAL OF FLUID DYNAMICS (CFD) 
This software has been used successfully for the simulation of a viscous compressible flow around the NACA0012 

profile on a mesh of 8 150 elements and 16 496 nodes, for a number of equations to be solved of 40 636. The 

mesh is shown in Fig. 1a, with an zoom around the profile on Fig. 1b. 

 

       
Figure 1: a) Mesh around the profile NACA0012. b) Zoom around the profile NACA0012 

 

Mach contours, density contours and velocity fields are illustrated in Figs. 2a, 2b and 2c respectively. 

 

 
Figure 2: a) Mach contours. b) Density contours. c) Velocity 

 

We note a gain of about 22.4% on runtime compared to equivalent Fortran software [1, 12]. On the other hand, 

we note a gain of 8.9% compared to the software in Fortran, as for the time necessary only to manipulate the data 

(organization and transfer of the data relative to the mesh), apart from all arithmetic operations, always in the case 

of flow around the profile NACA0012. 

 

CONCLUSION 
A finite element software, having a simple and flexible architecture, has been programmed in C ++ language. This 

software has been used successfully for solving the Navier-Stokes and Euler equations. Note that the description 

of the software presented reflects its current state which is not definitive, since the developments still continue in 

order to realize software in OOP for the resolution of partial differential equations and the construction and / or 

adaptation of mesh. Compared to software designed in Fortran language, the object-oriented approach has brought 

a big change in the organization and design of this new software. This new way of programming improves 

maintenance, robustness, scalability and re-usability. The characteristics of OOP that led to this result are the 

encapsulation of data, the hierarchical organization of the software associated with the concept of inheritance, 

polymorphism and sending message. 
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